

APPENDIX I

RECORD OF TEST HOLE LOG SHEETS

I. GENERAL

water content

degree of saturation

w S_r

$\pi = 3$.1416	(b)	Consistency
	ase of natural logarithms 2.7183	w_L	liquid limit
	a or 1n a , natural logarithm of a	W_P	plastic limit
	a or log a, logarithm of a to base 10	I_P	plasticity index
t 010	time	w _s	shrinkage limit
8	acceleration due to gravity	$I_{\rm L}$	liquidity index = $(w - w_P)/I_P$
V	volume	$I_{\rm C}^{\rm L}$	consistency index = $(w_L - w) / I_P$
W	weight	e_{max}	void ratio in loosest state
М	moment	e _{min}	void ratio in densest state
F :	factor of safety	D_r	relative density = $(e_{max} - e)/(e_{max} - e_{min})$
		- r	i max i to max i min
II.	STRESS AND STRAIN	(c)	Permeability
		h	hydraulic head or potential
и	pore pressure	q	rate of discharge
σ	normal stress	v	velocity of flow
σ'	normal effective stress ($\overline{\sigma}$ is also used)	i	hydraulic gradient
τ	shear stress	k	coefficient of permeability
ε	linear strain	j	seepage force per unit volume
\mathcal{E}_{xy}	shear strain	U	
ν	Poisson's ratio (µ is also used)	(d)	Consolidation (one-dimensional)
Ε	modulus of linear deformation (Young's	$m_{\rm v}$	coefficient of volume change = $-\Delta e/(1+e)\Delta \sigma'$
a	modulus)	C_{c}^{\prime}	compression index = $-\Delta e/\Delta \log_{10} \sigma'$
G K	modulus of shear deformation	C_{v}	coefficient of consolidation
	modulus of compressibility	$T_{\rm v}$	time factor = $c_v t/d^2$ (d, drainage path)
η	coefficient of viscosity	U	degree of consolidation
III.	SOIL PROPERTIES		
111.	SOILTROIERTIES	(e)	Shear Strength
(a)	Unit Weight	$ au_{f}$	shear strength
γ	unit weight of soil (bulk density)	c′	effective cohesion intercept In terms of effective stress
γ _s	unit weight of solid particles	ϕ'	effective angle of shearing resistance, $\tau_f = c' + \sigma' \tan \phi$
γ_w	unit weight of water		or friction
Υ _d	unit dry weight of soil (dry density)	c _u	apparent cohesion*
Y	unit weight of submerged soil	ϕ_{u}	apparent angle of shearing resistance, Stress
G_s	specific gravity of solid particles $G_s = \gamma_s / \gamma_w$	' u	or friction $\int_{\tau_{f}}^{\tau_{f}} z_{\mu} + \sigma \tan \phi_{\mu}$
e'	void ratio	μ	coefficient of friction
n	porosity	S_t	sensitivity
		~1	

* For the case of saturated cohesive soil, $\phi_u = 0$ and the undrained shear strength $\tau_s = c_u$ is taken as half the undrained compressive strength.

The abbreviation commonly employed on each "Record of Borehole", on the figures and in the test of the report, are as follows:

I. SAMPLE TYPES

- AS auger sample
- CS chunk sample
- DO drive open
- DS Denison type sample
- FS foil sample
- *RC* rock core
- ST slotted tube
- TO thin-walled, open
- TP thin-walled, piston
- WS wash sample
- *CC* continuous core

II. PENETRATION RESISTANCES

Dynamic Penetration Resistance:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) to drive uncased a 50 mm (2 in.) diameter, 60° cone attached to "A" size drill rods for a distance of 0.3 m (12 in.).

Standard Penetration Resistance, N:

The number of blows by a 63.5 kg (140 lb) hammer dropped 760 mm (30 in.) required to drive a 50 mm (2 in.) drive open sampler for a distance of 0.3 m (12 in.).

WH sampler advanced by static weight – weight, hammer.

PH sampler advanced by pressure – pressure, hydraulic.

PM sampler advanced by pressure - pressure, manual.

III. SOIL DESCRIPTION

(a) Cohesionless Soils

Relative Density	'N' <u>Blows/0.30 m</u> <u>or Blows/ft.</u>
Very Loose	0 to 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	Over 50

(b) Cohesive Soils

	۶ <u>(</u>	Cu'					
Consistency	<u>kPa</u> ps						
Very Soft	0 to 12	0 to 250					
Soft	12 to 25	250 to 500					
. Firm	25 to 50	500 to 1,000					
Stiff	50 to 100	1,000 to 2,000					
Very Stiff	100 to 200	2,000 to 4,000					
Hard	over 200	over 4,000					

IV. SOIL TESTS

- *C* consolidation test
- *H* hydrometer analysis
- M sieve analysis
- MH combined analysis, sieve and hydrometer¹
- Q undrained triaxial²
- R consolidated undrained triaxial²
- S drained triaxial
- U unconfined compression
- V field vane test

NOTES:

Combined analyses when 5 to 95 per cent of the material passes the No. 200 sieve.

Undrained triaxial tests in which pore pressures are measured are shown as \overline{Q} or \overline{R} .

Golder Associates

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION TERMINOLOGY

WEATHERING STATE (ISRM, 1981)

Fresh	Description	Grade
	No visible sign of rock material weathering: perhaps slight discolouration on major discontinuity surfaces.	I≡WI
Slightly weathered	Discolouration indicates weathering of rock material and discontinuity surfaces. All the rock material may be discoloured by weathering and may be somewhat weaker externally than in its fresh condition.	II ≡ W2
Moderately weathered	Less than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a continuous framework or as corestones.	III ≡ W3
Highly weathered	More than half of the rock material is decomposed and/or disintegrated to a soil. Fresh or discoloured rock is present either as a discontinuous framework or as corestones.	IV ≡ W4
Completely weathered	All rock material is decomposed and/or disintegrated to soil. The original mass structure is still largely intact.	V = ₩5
Residual soil	All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume. But the soil has not been	VI≡ W6

ROCK STRENGTH INDEX (ISRM, 1981)

The strength of the intact rock has been estimated in accordance with the International Society of Rock Mechanics (ISRM) Standard Classification System.

Grade	Description	Field Identification	Approx. Range of Uniaxial Compressive Strength (MPa)
R0	Extremely weak rock	Indented by thumbnail	0.25 – 1.0
R1	Very weak rock	Crumbles under firm blows with point of geological hammer, can be peeled by a pocket knife	1.0-5.0
R2	Weak rock	Can be peeled by a pocket knife with difficulty, shallow indentations made by firm blow with point of geological hammer	5.0 - 25
R3	Medium strong rock	Cannot be scraped or peeled with a pocket knife, specimen can be fractured with single firm blow of geological hammer	25 – 50
R4	Strong rock	Specimen requires more than one blow of geological hammer to fracture it.	50-100
R5	Very strong rock	Specimen requires many blows of geological hammer to fracture it	100 – 250
R6	Extremely strong rock	Specimen can only be chipped with geological hammer	>250

BEDDING THICKNESS

Description	Bedding Plane Spacing
Very thickly bedded	> 2 m
Thickly bedded	0.6 m to 2 m
Medium bedded	0.2 m to 0.6 m
Thinly bedded	60 mm to 0.2 m
Very thinly bedded	20 mm to 60 mm
Laminated	6 mm to 20 m
Thinly laminated	< 6 mm

DISCONTINUITY SPACING (ISRM, 1981)

Description	Spacing
Very wide	> 3m
Wide	1 - 3 m
Moderate	0.3 – 1 m
Close	50 – 300 mm
Very close	< 50 mm
Extremely close	< 20 mm

GRAIN SIZE

Term	Size*
Coarse Grained	0.6 – 2mm
Medium Grained	0.2 – 0.6 mm
Fine Grained	0.06 – 0.2 mm
Very Fine Grained silt, clay	<0.06 mm

LITHOLOGICAL AND GEOTECHNICAL ROCK DESCRIPTION **TERMINOLOGY** (continued)

CORE CONDITION

Total Core Recovery

The summed length of all pieces of recovered core expressed as a percentage of length drilled. When the core is highly fragmented the length of such portions is estimated by assembling the fragments and estimating the length of core that the fragments appear to represent.

Solid Core Recovery (SCR) The percentage of solid drill core, regardless of length, recovered at full diameter, measured relative to the length of the total core run.

Rock Quality Designation (RQD)

A modified core recovery percentage in which all the pieces of sound core over 10 cm long are counted as recovery. And are expressed as a percentage of the length drilled. If the core is mechanically broken (i.e. by handling or by the drilling process) the broken pieces should be fitted together and counted as one piece, provided they form the requisite length of 10 cm. RQD varies from 0% for completely broken core to 100% for core in solid sticks.

DISCONTINUITY DATA

Fracture Index

A count of the number of natural occurring discontinuities (physical separations) in the rock core, per 0.25 m.

Dip with Respect to (W.R.T.) Core Axis

The angle of the discontinuity relative to the axis (length) of the core. IN a vertical borehole a discontinuity with a 90° angle is horizontal.

Description and Notes

An abbreviated description of the discontinuities including naturally occurring separations such as bedding, planes, joints, and foliation planes. Additional information concerning the shape, roughness and infilling materials of the discontinuity are also noted.

Joint	Туре	J	oint Shape	Joir	t Roughness	Joint Infilling			
BD	Bedding	CU	Curved	PO, P	Polished	Br	Broken Rock		
CL	Cleavage	IR	Irregular	Ro, R	Rough	Bt	Biotite		
CO	Contact	PL	Planar	K,S	Slickensided	Ca	Calcite		
FLT,F	Fault	ST	Stepped	SM	Smooth	Ch	Chlorite		
FO	Foliation	UN	Undulating	VR	Very Rough	Cl	Clay		
JN, J	Joint				,	Ep	Epidote		
SH	Shear					Fe	Iron		
VN	Vein					Go	Gouge		
						Gr	Gravel		
						He	Hematite		
						Qz	Quartz		
						Sa	Sand		
						Se	Sericite		
						Si	Silt		
					·	Su	Sulphide		

Discontinuity Abbreviations

N:\FINAL\2003\1411\00D03-J411-007\100% SUBMISSION - FEB REPORTVTERMINOLOGY-0217 ROCK DESCRIPTION.DOC

Notes:

- 1. These logs should be read in conjunction with the "Alteration Logs". The Alteration Log is assumed to be the primary reference regarding alteration properties, mineralogy and petrology.
- Unless drilling evidence indicates otherwise, areas 2. of core loss are assumed to occur at the lower end of each core run. In zones of poor core recovery, rock conditions have been inferred as noted.
- Core breaks interpreted to have been caused by 3. drilling are termed "mechanical breaks". Mechanical breaks have not been considered in the determination of RQD or Fracture Index and have not been noted in the borehole logs. Identification of mechanical breaks is subject to interpretation. All interpretation of mechanical breaks have been made by the geotechnical engineer at the time of drilling. If the core is determined to be broken by handling or by the drilling process, the broken pieces have been fitted together and counted as one piece for assessing RQD.
- UTM Coordinates are used for the borehole 4. locations. Geodetic datum is used fore borehole collar elevations. McElhanney Consulting Services Ltd have surveyed both location coordinates and elevations of Phase I boreholes. Matson Peck and Topliss, BC Land Surveyors surveyed the Phase II boreholes.
- Joint infill minerology has been inferred based on 5. visual assessment; confirmatory XRD testing has not been completed on the joint infill.
- Preparation of the borehole logs has generally been б. carried out in accordance to "Rock Characterization Testing and Monitoring, ISRM Suggested Methods," ed. ET Brown; Published for the Commission on Testing Methods, International Society for Rock Mechanics (ISRM), 1981.

		T No.: 05-1411-081U N: See Figure 2		REC	:0	RD) (DF BOREHOLE: BH06-2 BORING DATE: October 6-8, 2006		HEET 1 OF 6 ATUM: Ordnance Dat
		N: 139801.87 E: 554160.36 R HAMMER, 64kg; DROP, 762mm							D	
MEIKES		SOIL PROFILE	PLOT	ELEV.		MPLE		DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s 20 40 60 80 10 ⁶ 10 ⁵ 10 ⁴ 10 ³ SHEAR STRENGTH nat V. + Q.• WATER CONTENT PERCENT	<u>2</u> %	PIEZOMETER OR STANDPIPE INSTALLATION
Ž	BORING	DESCRIPTION	STRATA PLOT	DEPTH (m)	NUMBER	TYPE	BLOWS/0.3m	SHEAR STRENGTH nat V. + Q. ● WATER CONTENT PERCENT Cu, kPa rem V. ⊕ U - O Wp OW I W 20 40 60 80 20 40 60 80 I <td< td=""><td>ADD.</td><td>-</td></td<>	ADD.	-
0 - 1 2 3	1 Auger	Ground Surface		2.24	1	50 DO	29	O		
5 6 7	Aardvark Drilling Ltd. Trailer Mounted CME 55 - Hollow Stem Auger			-3.25		50 DO 50 DO	7	c		
8		Loose to compact, wet, pink-white SAND, some gravel, trace to some silt (lightly to moderately cemented coralline deposits).			5	50 DO 50 DO	7		м	
10					-		_			

PROJECT No.: 05-1411-081U

RECORD OF BOREHOLE: BH06-2

BORING DATE: October 6-8, 2006

SHEET 2 OF 6

DATUM: Ordnance Datum

LOCATION: See Figure 2 N: 139801.87 E: 554160.36

SAMPLER HAMMER, 64kg; DROP, 762mm

HYDRAULIC CONDUCTIVITY, k, cm/s DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m PIEZOMETER SOIL PROFILE SAMPLES BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING OR STANDPIPE INSTALLATION STRATA PLOT 40 60 80 10^{.6} 10⁻⁵ 10-4 10⁻³ BLOWS/0.3m 20 NUMBER ELEV. TYPE nat V. + Q - ● rem V. ⊕ U - O SHEAR STRENGTH Cu, kPa WATER CONTENT PERCENT DESCRIPTION DEPTH Wp I— (m) 80 40 20 40 60 20 60 80 10 11 Aardvark Drilling Ltd. Trailer Mounted CME 55 - Hollow Stem Auge 12 50 DO 13 7 0 м 13 Loose to compact, wet, pink-white SAND, some gravel, trace to some silt (lightly to moderately cemented coralline deposits). (continued) 14 15 50 DO 8 20 0 16 -14.52 16.76 Fricor 17 with Mounted CME 55 - NW Casing Aardvark Drilling Ltd. Firm to stiff, moist, grey-green CLAY, some silt. 18 GLDR_CAN.GDT_12/29/06 -15.90 18.14 9 50 DO 13 0 н ailer Compact, wet, pink-white sandy SILT, some gravel to gravel, some sand, trace silt (lightly cemented coralline deposits). 19 - alternating soft and hard drilling zones to bottom of layer. 05-1411-081U.GPJ - with grey sea shells at bottom of layer. 1 20 CONTINUED NEXT PAGE BOREHOLE LOGGED: P.B. DEPTH SCALE Golder 1:50 CHECKED: <u>ssociates</u>

PROJECT No .:	05-1411-081U

RECORD OF BOREHOLE: BH06-2

BORING DATE: October 6-8, 2006

SHEET 3 OF 6

DATUM: Ordnance Datum

LOCATION: See Figure 2 N: 139801.87 E: 554160.36

SAMPLER HAMMER, 64kg; DROP, 762mm

DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s PIEZOMETER SOIL PROFILE SAMPLES BORING METHOD ADDITIONAL LAB. TESTING OR DEPTH SCALE METRES STRATA PLOT BLOWS/0.3m 80 10^{.6} 10⁻⁵ 10.4 10⁻³ STANDPIPE 20 40 60 NUMBER INSTALLATION TYPE nat V. + Q - ● rem V. ⊕ U - O ELEV. SHEAR STRENGTH Cu, kPa WATER CONTENT PERCENT DESCRIPTION DEPTH<u>w</u>... Wp H -1 WI (m) 40 80 20 60 40 60 80 20 50 DO 21 10 13 0 м Compact, wet, pink-white sandy SILT, some gravel to gravel, some sand, trace silt (lightly cemented coralline deposits). 22 - alternating soft and hard drilling zones to bottom of layer. - with grey sea shells at bottom of layer. (continued) 23 24 11 50 74 Tricone 0 -22.14 24.38 CME 55 - NW Casing with Aardvark Drilling 25 50 DO 12 14 0 ξŅ **Frailer** I 26 Firm to stiff, moist, grey-green SILT, some clay to silty CLAY, with some black, fine to medium grained sand. - white SAND and SILT layer between 25.5m - 25.8m depth (possible volcanic 27 ash). 50 DO 13 8 e - hard drilling between 28.0m - 28.3m depth. 28 05-1411-081U.GPJ GLDR_CAN.GDT 12/29/06 29 -27.02 50 14 97 30 CONTINUED NEXT PAGE BOREHOLE LOGGED: P.B. DEPTH SCALE Golder CHECKED: 1:50 ssociates

PROJECT No.: 05-1411-081U

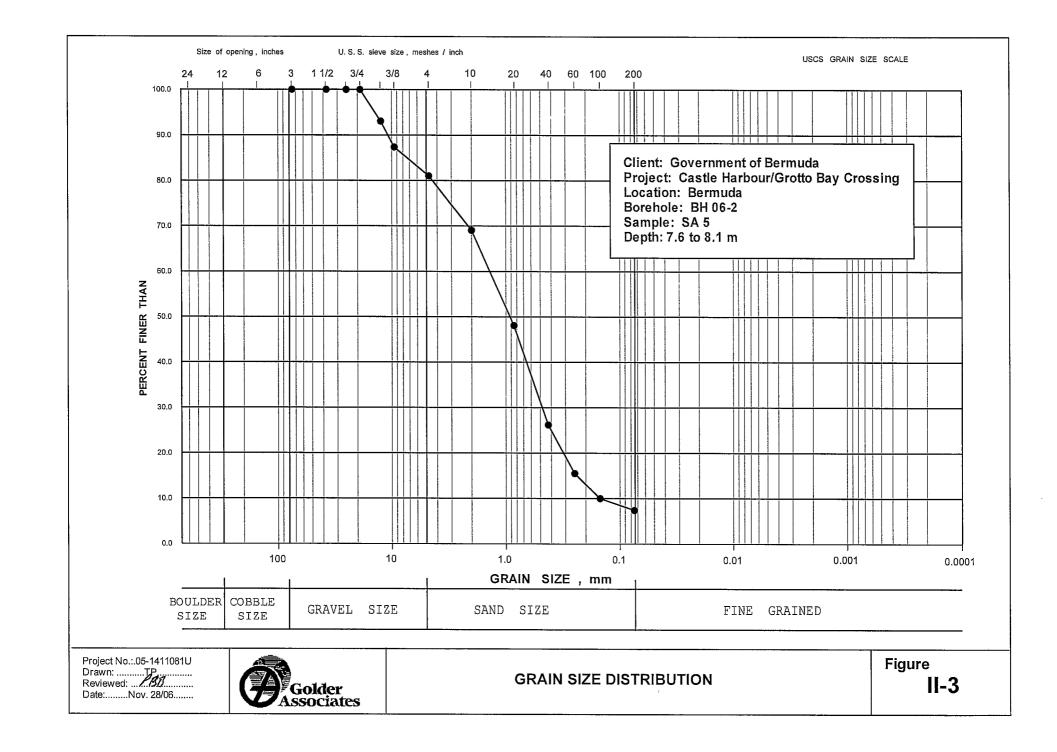
RECORD OF BOREHOLE: BH06-2

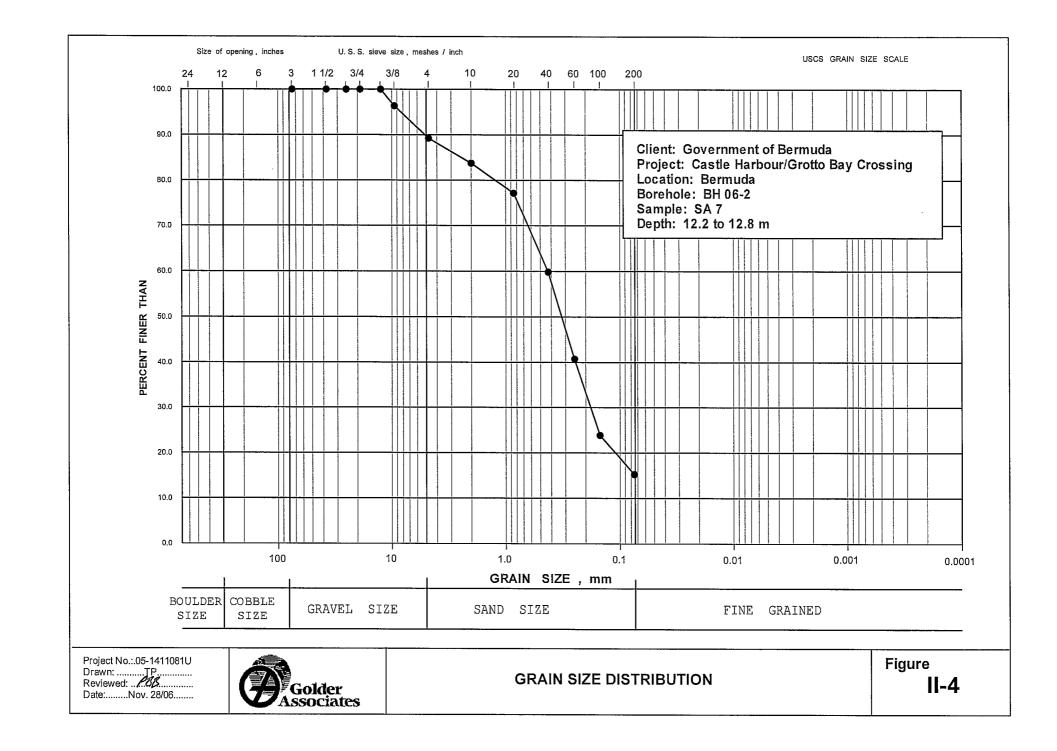
BORING DATE: October 6-8, 2006

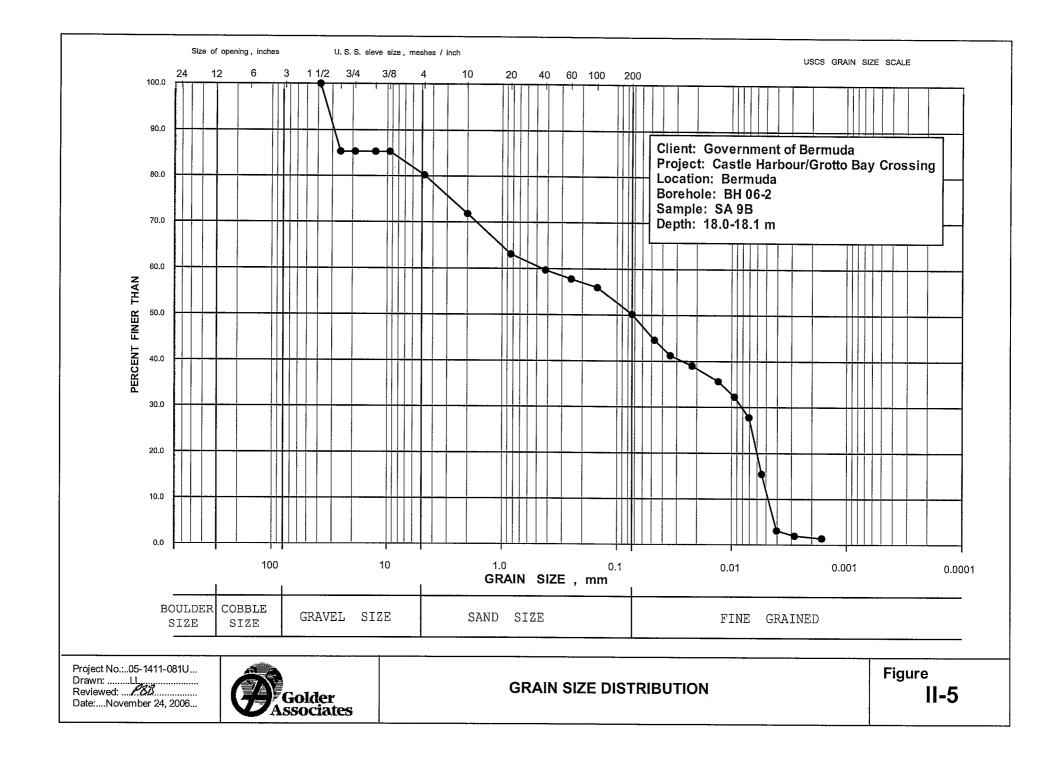
SHEET 4 OF 6

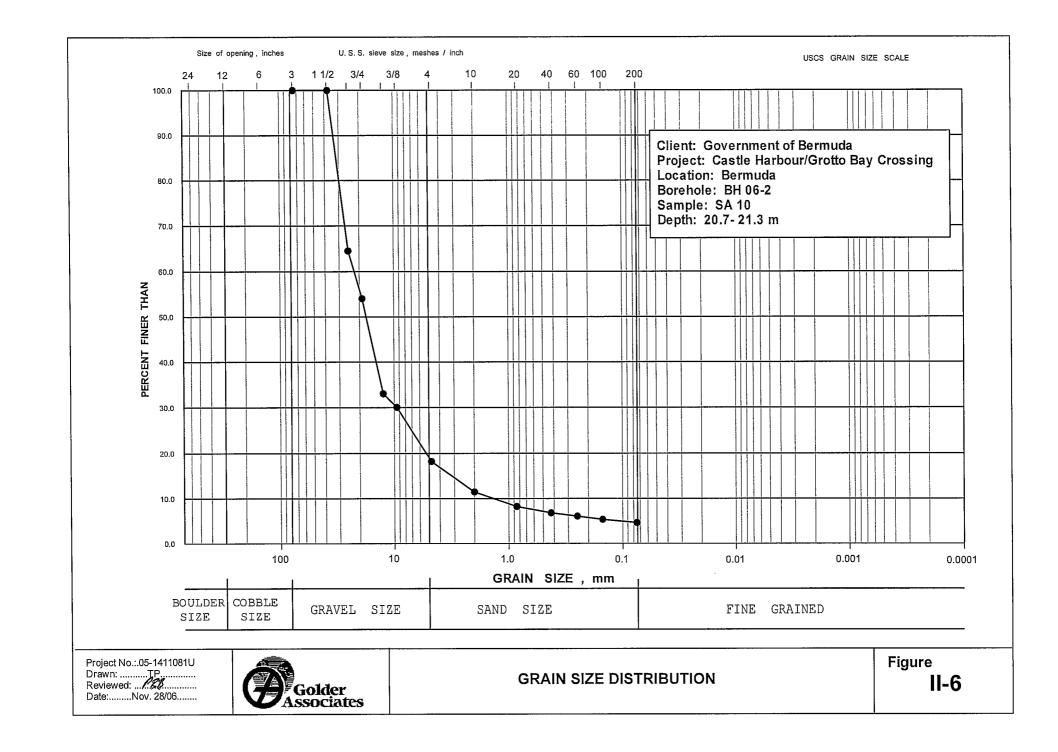
DATUM: Ordnance Datum

LOCATION: See Figure 2 N: 139801.87 E: 554160.36


SAMPLER HAMMER, 64kg; DROP, 762mm


DYNAMIC PENETRATION RESISTANCE, BLOWS/0.3m HYDRAULIC CONDUCTIVITY, k, cm/s SOIL PROFILE SAMPLES PIEZOMETER BORING METHOD DEPTH SCALE METRES ADDITIONAL LAB. TESTING OR STRATA PLOT BLOWS/0.3m 10.6 10⁻⁵ 10-4 10⁻³ STANDPIPE 20 40 60 80 NUMBER INSTALLATION ELEV. TYPE SHEAR STRENGTH Cu, kPa nat V. + Q - ● rem V. ⊕ U - O WATER CONTENT PERCENT DESCRIPTION DEPTH Wp I--I WI (m) 40 60 80 40 60 20 20 80 30 DO 50 DO d |-| 14 97 31 Highly to completely weathered thinly bedded, dark grey with localized light grey zones and red and green mineralization, microcrystalline to very coarse grained, faintly porous to non-porous, extremely weak VOLCANICS. (continued) Чţ 7 7 7 7 7 7 7 7 7 7 7 7 50 DO 73 CME 55 - NW Casing 15 0 Ë Aardvark Drilling 32 Mounted Trailer 33 16 50 DO 51 C ~~ ~~ -31.14 Refer to ROCK LOG for continuation of rock description. 34 35 36 37 38 05-1411-081U.GPJ_GLDR_CAN.GDT_12/29/06 39 40 BOREHOLE DEPTH SCALE LOGGED: P.B. Golder 1:50 CHECKED <u>ssociates</u>


			No.: 05-1411-081U N: See Figure 2 N: 139801.87 E: 554160.36						DRILLIN DRILL R	G DATE: O IG: CME 55 G CONTRA	ctobe	er 6-	-8, 2	2006	06-2 C Drilling Ltd.				IEET 5 OF 6 ATUM: Ordnance Dat
METRES	DRILLING RECORD		DESCRIPTION	SYMBOLIC LOG	ELEV. DEPTH (m)	RUN No.	PENETRATION RATE (m/min)	FLUSH <u>COLOUR</u>	FR-FRACTURE CL-CLEAVAGE SH-SHEAR VN-VEIN RECOVERY TOTAL SOL CORE CORE 8 8 9 8 8 8	F-FAULT J-JOINT P-POLISHED S-SLICKENS R.Q.D. R.Q.D. %		R-1 ST PL T. X	ROU	EPPED ANAR DISC w.r.t. AXIS	UE-UNEVEN W-WAVY	BC-BROKEN MB-MECH. I B-BEDDING CH-CHLORI ROC STREN CE INDE	BREAK TIZED K GTH X	NG EX	NOTES WATER LEVELS INSTRUMENTATIOI
			Continued from SOIL LOG.		-31.14							Ĩ	T	\prod			\Box		
34			Highly to completely weathered thinly bedded, dark grey with localized light grey zones and red and green mineralization, microcrystalline to very coarse grained, faintly porous to non-porous, extremely weak VOLCANICS. broken core from: 33.4m to 35.9m depth. - see detailed lithology in Appendix II.	2 0 0 0 0 0 0 0	33.38	2		Grey Grey 100											
36 37		el	Moderate to slightly weathered, thinly bedded, medium to dark grey-green with white calcite veins, fine to very coarse grained, non-porous, weak VOLCANICS. - broken core from: 36.0m to 36.8m and 37.2m to 37.4m depths.		2	3		Grey 100											
38	Aardvark Drilling Ltd.	frailer Mounted CME 55 - NQ Core Barrel	Fresh, thinly bedded, medium to dark grey-green with white calcite veins, microcrystalline to coarse grained, non-porous, weak to medium strong VOLCANICS. - joints are planar to irregular and rough to very rough. - broken core from: 38.1m to 38.7m depth. - see detailed lithology in Appendix II.		37.49 7 7 7 7	4		Grey 400											UCS = 22.6 MPa
39 40			Fresh, thinly bedded, dark grey with white calcite veins, fine to medium crystalline, non-porous, medium strong VOLCANICS. - broken core from: 39.0m to 39.6m and 40.0m to 40.6m depth. - see detailed lithology in Appendix II.		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Grey											
41			Fresh, thinly bedded, green-grey with white calcite veins, microcystalline, medium strong VOLCANICS. - broken core through layer. - see detailed lithology in Appendix II.		⊽ ⊽ ⊽ √ √ 40.6 ⊽ ⊽	9 6 	i	Grey											
42			Fresh, thinly bedded, grey-green-black, fine to very coarse grained, non-porous, weak VOLCANICS. Firm, moist, grey-green, silty CLAY, some sand and angular gravel, some silt. Fresh, thinly bedded, light grey-green, microcrystalline with fine to medium grained inclusions, non-porous, weak VOLCANICS. - joints are planar to irregular and very rough.		-39.8 42.0 42.0 42.0 42.0	7 2 6 7	,	Grey											UCS = 13.8 MPa
43			- broken core from: - 22.7m depth. - see detailed lithology in Appendix II. CONTINUED NEXT PAGE	/	42.9														


		N: See Figure 2 N: 139801.87 E: 554160.36	DRILL RIG: CME 55 DRILLING CONTRACTOR: Aardvark Drilling Ltd.															DATUM: Ordnanc								
DEPTH SCALE METRES	DRILLING RECORD	DESCRIPTION	SVMBOLIC LOG	ELEV. DEPTH (m)	RUN NO.	FLUSH COLOUR		-CLE/ -SHE -VEIN	AVAGE AR I OVER SC COF	J- P- S- LID E %	FAGET JOINT -POLISH -SLICKE R.Q.D. %			R-R ST- PL- T. X .3 C	STEF	H PPED JAR DISCO	UE-UNEVEN	MB- B-B CH-	-MEC EDD -CHU F STF	:H. B ING ORIT	REA FIZEI STH	р \ 		NG EX		NOTE: WATER LE INSTRUMEN
- - - - - - - - - - - - - - -		End of BOREHOLE. at 42.98m. (achieved suitable depth)																							-	
- - - - - - - - - -																										
- - 46 																										
- - - 47 -		ja j	τ,												a											يو. ا
- - - - - - - - - - - -				- 																						
- - - - - - - - -																										
- 50				-																						
51 51 90/62/																										
05-1411-081U.GPJ G											olde															

GRAIN SIZE DISTRIBUTION ANALYSIS TEST RESULTS

